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Abstract

The aim of this paper is to develop a Bayesian functional linear Cox regression model (BFLCRM) 

with both functional and scalar covariates. This new development is motivated by establishing the 

likelihood of conversion to Alzheimer’s disease (AD) in 346 patients with mild cognitive 

impairment (MCI) enrolled in the Alzheimer’s Disease Neuroimaging Initiative 1 (ADNI-1) and 

the early markers of conversion. These 346 MCI patients were followed over 48 months, with 161 

MCI participants progressing to AD at 48 months. The functional linear Cox regression model was 

used to establish that functional covariates including hippocampus surface morphology and scalar 

covariates including brain MRI volumes, cognitive performance (ADAS-Cog), and APOE status 

can accurately predict time to onset of AD. Posterior computation proceeds via an efficient 

Markov chain Monte Carlo algorithm. A simulation study is performed to evaluate the finite 

sample performance of BFLCRM.
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1. Introduction

Alzheimer’s Disease (AD) is a firmly incurable and progressive disease [14]. In the 

pathology of AD, mild cognitive impairment (MCI) is a clinical syndrome characterized by 

insidious onset and gradual progression, and commonly arising as a result of underlying 

neurodegenerative pathology [26]. Since MCI is considered as a risk state for AD, a major 

research focus in recent years has been to delineate a set of biomarkers that provide evidence 

of such a neurodegenerative pathology in living individuals, with the goal of specifying the 

likelihood that the pathophysiological process is due to Alzheimer’s disease (MCI due to 

AD; MCI-AD) and will lead to dementia within a few years [1]. Accordingly, increasing 

attention has been devoted to investigate the utility of various imaging, genetic, clinical, 

behavioral, and fluid data to predict the conversion from MCI to AD.

Several studies have utilized a small subset of biosignatures and then assessed the relative 

importance of different modalities in predicting the diagnostic change from MCI to AD [12, 

21, 58, 61, 80]. For example, in [12], the authors simultaneously examined multiple features 

from different modalities, including structural magnetic resonance imaging (MRI) 

morphometry, cerebrospinal fluid biomarkers, and neuropsychological measures to assess an 

optimal set of predictors of conversion from MCI to AD. They observed that structural 

changes within the medial temporal lobe (MTL), particularly the hippocampus, as well as 

performance on cognitive tests that rely on MTL integrity (i.e., episodic memory), were 

good predictors of MCI to AD conversion.

Recently, most researchers have turned to the analysis of longitudinal data to assess the 

dynamic changes of various biomarkers associated with the MCI-to-AD transition across 

time. To begin, a prominent neural correlate of MCI-AD is volume loss within the MTL, 

especially within the hippocampus and entorhinal cortex [19], with increasing atrophy in 

these structures from normal aging to MCI to AD [54]. Longitudinal studies of individuals 

with MCI-AD have also highlighted the importance of assessing MTL changes in tracking 

the progression of MCI to AD. For example, several studies have documented diminished 

baseline hippocampal and entorhinal volumes that are associated with an increased 

likelihood of progressing to clinical dementia [29, 41]. Additionally, several modalities of 

disease indicators have been studied to assess progression to AD, including neuroimaging 

markers [61, 75, 79], biomedical markers [65], and neuropsychological assessments [55]. 

Finally, a number of structural MRI studies, covering region of interest (ROI), volume of 

interest, voxel-based morphometry, and shape analysis have reported that the degree of 

atrophy in several brain regions, such as the hippocampus and entorhinal cortex, is not only 

sensitive to disease progression, but also predicts MCI conversion [10, 16, 48].

Despite the importance of these investigations, a central question remains. Namely, how do 

we accurately predict the time to conversion in individuals who harbor AD pathology, as 
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well as determine the optimal early markers of conversion? In [73], 148 MCI subjects were 

used to identify the most predictive neuropsychological measures. In [44], 139 MCI subjects 

in ADNI-1 were used to evaluate the predictive power of brain volume, ventricular volume, 

hippocampus volume, APOE status, cerebrospinal fluid (CSF) biomarkers, and behavioral 

scores. Their results show a moderately accurate prediction with the value of an area under 

the curve of 0.757 at 36 months, whereas they found that baseline volumetric MRI and 

behavioral scores were selectively predictive. Finally, in [13], 381 MCI subjects from ADNI 

1 were examined to evaluate several biomarkers for predicting MCI to AD conversion 

including spatial patterns of brain atrophy, ADAS-Cog, APOE genotype, and cerebrospinal 

fluid (CSF) biomarkers. Their findings suggest that a combination of spatial patterns of 

brain atrophy and ADAS-Cog offers good predictive power of conversion from MCI to AD, 

whereas APOE genotype did not significantly improve prediction. To the best of our 

knowledge, no prior study has examined the role of functional covariates including 

hippocampus surface morphology in predicting time to conversion from MCI to AD with/

without adjusting for low-dimensional behavioral and clinical measures.

To assess the predictability of hippocampus surface morphology in survival models, we 

develop a Bayesian functional linear Cox regression model (BFLCRM) with both functional 

and scalar covariates. The BFLCRM integrates a Cox proportional hazard regression and 

functional linear model into a single framework. First, BFLCRM can be an important 

extension of various statistical models including parametric, semiparametric and 

nonparametric models for handling survival response data and scalar covariates. See 

overviews of various survival models in [24, 33, 40] and the references therein. Recent 

advances in computation and prior elicitation have made Bayesian analyses of these survival 

models with scalar covariates feasible. For instance, nonparametric prior processes including 

the gamma process prior, the Beta process model, the correlated gamma process, and the 

Dirichlet process prior have been developed as the prior distribution of the baseline 

cumulative hazard function [33, 70]. Second, BFLCRM can be an important extension of 

various functional linear models for handling discrete or continuous response data and 

functional covariates. The existing literature focuses on the development of frequentist 

methods for functional linear models. Some examples include [23, 38, 59, 60, 78] and the 

references therein. Third, BFLCRM can be regarded as an important extension of high-

dimensional survival models. However, most high-dimensional survival models focus on the 

identification of a small set of covariates and their overall effect on time-to-event outcomes 

[5, 39, 43]. These approaches can be sub-optimal for high-dimensional imaging data, since 

the effect of imaging data on clinical data and other imaging data is often non-sparse, which 

makes it notoriously difficult for many existing regularization methods [20, 74].

In Section 2, we will introduce BFLCRM and its associated Bayesian estimation procedure. 

In Section 3, we will introduce the NIH Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) dataset and illustrate the use of BFLCRM in the prediction of time to conversion 

from MCI to AD by using both functional and scalar covariates. In Section 4, we conduct 

simulation studies to examine the finite sample performance of BFLCRM. In Section 5, we 

interpret the findings obtained from the analysis of ADNI dataset.
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2. Bayesian Functional Linear Cox Regression Models

2.1. Setup.

Consider imaging, genetic, and clinical data from n = 346 independent MCI patients in 

ADNI-1. For the i-th MCI patient, we observe a possibly right censored time to conversion 

to AD, denoted by yi. Specifically, yi = Ti∧Ci is the minimum of the censoring time Ci and 

the transition time Ti and νi = 1(yi = Ti), where 1(·) is an indicator function. Moreover, we 

observe a p × 1 vector of scalar covariates, denoted by xi = (xi1, ··· , xip)T, and a functional 

covariate, denoted by Zi(·), on a compact set . In this paper, we focus on the 

noninformative censoring setting such that Ti and Ci are conditionally independent given all 

covariates of interest. The scalar covariates of interest include age at baseline, length of 

eduction, gender, handedness, marital status, retirement, and the well-known Apolipoprotein 

E (APOE) SNPs. The APOE has three major forms, ϵ2, ϵ3, and ϵ4, where ϵ3 is the most 

common form. The functional covariate of interest is the hippocampus surface morphology. 

Figure 1 shows the example hippocampus surface morphology data in ADNI-1 data.

Our problems of interest are to establish the likelihood of conversion to Alzheimer’s disease 

(AD) in 346 MCI patients enrolled in the ADNI-1 and to select the optimal early markers of 

conversion from both the scalar covariates and the functional covariate. With the sole 

presence of xi, it is common to consider Cox’s proportional hazards model [11], which 

assumes that the conditional hazard function of yi given xi is given by

(2.1)

where β = (β1, ··· , βp)T is a p × 1 vector of regression coefficients and h0(·) is an unknown 

baseline hazard function. However, the Cox proportional hazards model (2.1) does not 

incorporate the effect of the functional covariate Zi(·) on the time to conversion.

2.2. Model Formulation

We propose a Bayesian functional linear Cox regression model with three main ingredients 

for handling both functional and scalar covariates as a natural extension of (2.1). Based on 

this formulation, we take a Bayesian approach to estimate the parameters of interest.

In the first component of BFLCRM, it is assumed that the hazard function of yi given (xi, 

Zi(·)) is given by

(2.2)

where μ(s) is the mean function of Zi(s) and γ(·) is an unknown coefficient function, a square 

integrable function on .

The second component of BFLCRM is the functional principal component analysis (fPCA) 

model of the Zi(·)’s. It is assumed that the Zi(s)’s are square integrable random functions and 

Wi(s) are measured at a set of grid points in  with measurement errors such that
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(2.3)

where  characterizes individual functional variations from μ(s). The ϵi(s)’s are 

measurement errors with mean zero and variance  at each s and independent of each 

other for s ≠ s′. Moreover, μ(s) can be consistently estimated by .

It is assumed that Zi(s) and ϵi(s) are independent of each other and the covariance function 

of , denoted by , is continuous on . 

According to Mercer’s theorem, K(s, s′) also admits a spectral decomposition 

, where (ψj, ϕj(s))’s are the eigenvalue-eigenfunction pairs 

of K(s, s′) such that {ψj : j ≥ 1} are the eigenvalues in decreasing order with . 

Thus,  admits the Karhunen-Loeve expansion as , where ξij are 

referred to functional principal component (fPC) scores and  are 

uncorrelated random variables with mean zero and variance . To estimate ξij 

based on the observed covariate functions Wi(s), we first employ the cubic smoothing spline 

[30] to estimate the underlying signal Zi(s). We then use the sample mean and covariance 

functions of the estimated Zi(s) to estimate μ(s) and K(s, s′). Subsequently, we estimate ϕj(s) 

and ξij for all i, j ≤ n.

The third component of the FLCRM is an approximation of . Since the 

eigenfunctions ψj(·) form a complete orthonormal system on the space of square-integrable 

functions on , the covariate function γ(s) can be expanded as

(2.4)

Therefore, we have

(2.5)

and approximate h(y∣xi, Zi(·)) as

(2.6)

where qn is a sufficiently large integer that may depend on n. As shown in the literature, 

such an approximation is accurate under some conditions on the decay rate of the γj’s. 

Practically, it is common to choose qn such that the percentage of variance explained by the 

first qn fPCA components is 70%, 85%, or 95%. Alternatively, we may formulate it as a 
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model selection procedure and choose it by using some model selection criterion, such as the 

deviance information criterion (DIC) [34, 71].

2.3. Priors

To carry out a Bayesian analysis of model (2.6), we specify joint prior distributions for all 

unknown parameters (β, γ, h0), where h0(·) is the baseline hazard function. We first set p(β, 

γ, h0) = p(β, γ)p(h0) and assume (β, γ) ~ N(μ0, Σ0), where N(μ0, Σ0) is the multivariate 

Normal distribution with s (p + qn) × 1 mean vector μ0 and a (p + qn) × (p + qn) covariance 

matrix Σ0.

We may specify different prior distributions for h0(y). The most convenient and popular 

distribution for h0(y) is the piecewise constant hazard model. Specifically, we first construct 

a finite partition of the time axis, 0 < s1 < s2 < ··· < sJ, with sJ > yi for all i, which leads to J 

intervals (0, s1], ···, (sJ−1, sJ]. In the j–th interval, we set h0(y) = λj for y ∈ Ij = (sj−1, sj]. A 

common prior of the baseline hazard λ = (λ1, ··· , λJ)T is the independent gamma prior 

 for j = 1, ··· , J, where α0j and α1j are prior hyperparameters. Another 

approach is to build prior correlation among the λj’s using a prior ψ ~ N(ψ0, ΣJ), where ψj = 

log(λj) for j = 1, ··· , J and ψj = (ψ1, ··· , ψJ). For notational simplicity, we focus on the 

piecewise constant hazard model with the independent gamma prior from here on.

We consider the strategy of choosing the hyperparameters Σ0, α0j and α1j as follows. We 

can tune the eigenvalues of Σ0 in order to control the prior information for the regression 

coefficients. If the smallest eigenvalue λmin(Σ0) converges to ∞, then N(μ0, Σ0) tends to be 

an improper prior. In contrast, if the largest eigenvalue λmax(Σ0) is very small, then N(μ0, 

Σ0) tends to be a strongly informative prior. In order to use a noninformative prior for the 

λj’s, the shape and scale parameters of the gamma distributions are set to be α0j = 0.2 and 

α1j = 0.4 for all j = 1, ··· , J [69]. Also setting either (α0j, α1j) = (0.5, 1) or (α0j, α1j) = (0.2, 

1) would make the gamma distribution flat as well.

2.4. Posterior Computation

The log-posterior distribution of (β, γ, λ) (unnormalized) is given by

(2.7)

where , and s0 = 0. Moreover, uij = 1 if the i–th 

subject is right censored in the j–th interval and 0 otherwise. We propose a Gibbs sampler 

for posterior computation after truncating the sum of the infinite series to have qn < ∞ 

terms. The Gibbs sampler is computationally efficient and mixes rapidly. We first specify 

the hyperparameters μ0, Σ0, α0j and α1j for all j at appropriate values to represent prior 
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opinion. Starting from the initiation step, the Gibbs sampler for model (2.6) with the 

truncated term qn proceeds as follows:

1. Update (β, γ) according to their full conditional distribution in (2.7). Specifically, 

we employ the random walk Metropolis-Hastings (M-H) [31, 47] algorithm and 

choose a multivariate Normal proposal density yielding an average acceptance rate 

of 23.4% [27]. The mean of the proposal density is the posterior sample (βt−1, γt−1) 

from the previous iteration. The covariance matrix is the inverse of the Fisher 

information matrix of the posterior distribution evaluated at (βt−1, γt−1).

2. Update λj from its full conditional distribution

where  is the vector λ0 without the j-th element and  is given by

3. Alzheimer’s Disease Neuroimaging Initiative Data Analysis

3.1. Alzheimer’s Disease Neuroimaging Initiative

The development of the BFLCRM is motivated by the analysis of imaging, genetic, and 

clinical data collected by ADNI. “Data used in the preparation of this article were obtained 

from the Alzheimers Disease Neuroimaging Initiative (ADNI) database (www.loni.usc.edu/

ADNI). The ADNI was launched in 2003 by the National Institute on Aging (NIA), the 

National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug 

Administration (FDA), private pharmaceutical companies and non-profit organizations, as a 

$60 million, 5-year public private partnership. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), 

other biological markers, and clinical and neuropsychological assessment can be combined 

to measure the progression of mild cognitive impairment (aMCI) and early Alzheimers 

disease (AD). Determination of sensitive and specific markers of very early AD progression 

is intended to aid researchers and clinicians to develop new treatments and monitor their 

effectiveness, as well as lessen the time and cost of clinical trials. The Principal Investigator 

of this initiative is Michael W. Weiner, M.D., VA Medical Center and University of 

California - San Francisco. ADNI is the result of efforts of many co-investigators from a 

broad range of academic institutions and private corporations, and subjects have been 

recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI was to 

recruit 800 adults, ages 55 to 90, to participate in the research approximately 200 cognitively 

normal older individuals to be followed for 3 years, 400 people with aMCI to be followed 
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for 3 years, and 200 people with early AD to be followed for 2 years. For up-to-date 

information see www.adni-info.org.”

3.2. Data Description

The aim of this ADNI data analysis is to examine the predictability of clinical, genetic, and 

imaging data for the time to conversion to AD in MCI patients. We focused on 346 MCI 

patients at baseline of the ADNI-1 database. Among the 346 MCI patients, 151 of them are 

converters and 195 are non-converters at 48 months.

For each MCI patient, we included his/her clinical, genetic, and imaging variables at 

baseline. The clinical characteristics include Gender (0=Male; 1=Female), Handedness 

(0=Right; 1=Left), Marital Status (1=Married; 2=Widowed; 3=Divorced; 4=Never married), 

Education length, Retirement (1=Yes; 0=No), Age, and Alzheimer’s Disease Assessment 

Scale-Cognition (ADAS-Cog) score. Marriage status is coded using 3 dummy variables: 

“Widowed”, “Divorced”, “Never married”. The ADAS-Cog test has been widely used to 

assess the severity of dysfunction in adults [62]. The genetic variables include the APOE 

genetic covariates, since it is well known that mutations in APOE raise the risk of 

progression from amnestic MCI to AD[56]. The Apolipoprotein E (APOE) SNPs, rs429358 

and rs7412 were, separately, genotyped in ADNI-1. These two SNPs together define a 3 

allele haplotype, namely the ϵ2, ϵ3, and ϵ4 variants and the presence of each of these 

variants was available in the ADNI database for all the individuals. Among these variants, 

APOE-ϵ3 is known to be most common allele, while APOE-ϵ4 has been turned out to be a 

risk factor for early onset of AD. [52]. In this model, we consider the presence of APOE-ϵ4 

as a covariate to incorporate its effect on the time to conversion from MCI to AD. In 

addition, we selected 7 regions of interest (ROIs) which may significantly influence MCI 

progression among the 93 ROI volume data [6, 22, 37]. These 7 ROIs are bilateral 

hippocampal formation, bilateral amygdala, posterior limb of internal capsule, bilateral 

thalamus. In total, we have 17 scalar covariates. The imaging data include the hippocampal 

radial distances of 30,000 surface points on the left and right hippocampal surfaces. The 

hippocampal radial distance is a distance from its medial core to the hippocampal surface 

and measures hippocampal thickness.

In the demographic information, 220 participants are male, and 126 are female; 316 are 

right-handed, and 30 are left-handed. For Marital Status, 283 were married, 40 were 

widowed, 19 were divorced, and 4 were never married at baseline. Among these individuals, 

276 were retired and 70 were not. On average, the subjects had 15.7 years of education with 

standard deviation 3.0 years, the minimum 6 years, and the maximum 20 years. The average 

age of subjects was 75.0 years with standard deviation of 7.3 years. The youngest person 

was 55 years old, while the oldest person was 90 years old. For the genetics information on 

the first allele of APOE, 25 subjects had genotype 2, 277 subjects had genotype 3, and 44 

subjects had genotype 4. For the second allele, 156 subjects had genotype 3, while 190 

subjects had genotype 4. The average ADAS-cog score was 11.5, with standard deviation of 

4.4. The lowest score was 2 and the highest score was 27.67.
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3.3. Hippocampus Image Preprocessing

We used a hippocampal image analysis package to calculate hippocampal surface data as 

follows [8, 46, 50,66, 67, 68, 77]. Given the 3D MRI scans, we used FIRST [53] to segment 

hippocampal substructures and then applied the marching cube method [45] to automatically 

reconstructing hippocampal surfaces. Then, an automatic algorithm, called topology 

optimization, was used to introduce two cuts on a hippocampal surface in order to convert it 

into a genus zero surface with two open boundaries. The two cuts, whose locations were at 

the front and back of the hippocampal surface, represent its anterior junction with the 

amygdala and its posterior limit as it turns into the white matter of the fornix. We then 

computed holomorphic 1-form basis functions [76]. It allows us to induce conformal grids 

of the hippocampal surfaces which were consistent across subjects. The conformal 

representation of the surface was computed with this conformal grid [66]. We also computed 

the “feature image” of a surface by combining the conformal factor and mean curvature and 

linearly scaling the dynamic range into [0, 255]. Finally, the feature image of each surface in 

the dataset was registered to a common template by using an inverse consistent fluid 

registration algorithm [68]. It establishes high-order correspondences between 3D surfaces. 

Finally, we computed various surface statistics based on the registered surface, such as 

multivariate tensor-based morphometry (mTBM) statistics [76].

3.4. Data Analysis

We focused on 346 MCI patients in the ADNI-1 data in order to examine the predictability 

of clinical, genetic, and imaging covariates for the time to conversion to AD from MCI. The 

patients consist of 151 converters and 195 non-converters. We fit BFLCRM with time to 

conversion to AD as the response yi, the clinical, genetic, and ROI volume data as scalar 

covariates in xi, and the hippocampus surface data based on radial distance as functional 

covariates in Zi(·) for the i-th subject. In all posterior computations, we centered the scalar 

covariates xi using their mean. We chose the first 14 eigenfunctions of hippocampal surface 

data, which explain about 73.48% of the variance in the hippocampus surface data. The first 

14 largest eigenfunctions projected on the hippocampal surfaces were presented in Figure 3 

in the supplementary document. For the piecewise constant hazards model of h0(·), we chose 

J = 70 intervals so that each interval contains at least one failure or censored observation. 

The full BFLCRM model (2.6) contains 19 scalar covariates and the first 14 fPC scores.

Due to the lack of prior information, all hyperparameters were chosen to reflect nearly 

noninformative priors. For regression coefficients, the hyperparameters of the multivariate 

Normal priors were set as μ0 = (0, ··· , 0) and Σ0 = diag(5, ··· , 5). For the γj’s, the shape and 

scale parameters of the Gamma priors were set to be α0j = 0.2 and α1j = 0.4 for j = 1, ··· , 70 

[69]. We ran the Gibbs sampler for 25,000 iterations after 5,000 burn-in iterations. Based on 

the 20,000 MCMC samples, we calculated various posterior quantities of (β, γ, λ). For the 

full BFLCRM model, we also conducted sensitivity analyses in order to investigate the 

influence of different choices of hyperparameters in the prior distributions. From the results 

shown in Tables 1 and 2 in the supplementary document, we found that the proposed priors 

were robust to various choices of the hyperparameters in the prior distributions. The 

computational time (in C/C++ using an 8-cores 2.80 GHz Intel processors) was 350 seconds 

for running the Gibbs sampler for the full BFLCRM model with 25,000 iterations.
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Table 1 shows the posterior means of the regression coefficients β and their standard 

deviations, as well as the lower and upper limits of the 95% highest posterior density (HPD) 

intervals based on the full BFLCRM model. Six scalar covariates including “Length of 

Education”, “Age”, “APOE-ϵ4 carrirer”, “ADAS-cog score”, “Left Hippocampal 

formation”, and “Right amygdala” have 95% HPD intervals that do not contain 0. This 

implies that we can expect a worse prognosis of AD for MCI patients with lower ROI 

volume in the left hippocampal formation and the right amygdala. This finding supports the 

finding that atrophy of the hippocampal formation is a significant diagnostic marker [35, 

42]. It also confirms the previous finding that the amygdala volume tends to be reduced in 

the early stage of AD[49,57]. Moreover, the 95% HPD intervals of the 1st, 7th, and 14th 

fPCs do not contain 0. This may indicate that the hippocampal radial distance is an 

important functional covariate for predicting the time to conversion to AD in MCI subjects.

We estimated the coefficient function γ(·) by using , where  is the 

posterior mean of γj for each j. Figure 4 shows the estimated coefficient function 

associated with the hippocampal surface data. When hippocampal atrophy in a red region is 

greater, a risk of progressing from MCI to AD is expected to be increased. A blue region 

suggests that the thicker the area is on the hippocampus, the shorter the time to conversion to 

AD is. Inspecting Figure 4 reveals that the subfields of CA1 and subiculum on the 

hippocampi have positive effects on the hazard function, indicating that the thinner these 

areas on the hippocampus are, the shorter the time is to conversion to AD.

Figure 3 shows the estimated survival functions of the APOE-ϵ4 carriers and non-carriers, 

when the values of the continuous covariates are set at their mean values and the categorical 

variables are set at their reference levels. The dotted lines show the 95% HPD intervals of 

survival functions. The APOE-ϵ4 carriers are expected to convert from MCI to AD faster 

than non-carriers. These results are consistent with several prior studies suggesting that the 

presence of the APOE-ϵ4 allele increases the risk of developing AD [9, 63, 72].

We compared the full BFLCRM model with three reduced models in terms of their 

predictive performance. For Model 1, we excluded the ROI volume covariates from the full 

BFLCRM model. For Model 2, we only included all the scalar covariates. For Model 3, we 

only included the clinical covariates, APOE-ϵ4 status, and the ADAS-cog score. For all 

three reduced models, we set J = 70 intervals so that each interval contains at least one 

failure or censored observation. For the regression coefficients, the hyperparameters of the 

multivariate Normal priors were set as μ0 = (0, ··· , 0) and Σ0 = diag(5, ··· , 5). We set α0j = 

0.2 and α1j = 0.4 for j = 1, ··· , 70. We ran the Gibbs sampler for 25,000 iterations after 5,000 

burn-in iterations. We also calculated the Deviance Information Criterion (DIC) and 

integrated AUC (iAUC) for all four models, where AUC denotes the area under the Receiver 

Operating Characteristic (ROC) curve. The DIC can be estimated within the MCMC 

iterations. More details can be found in [34, 71].

Table 2 shows the values of DIC and iAUC for the four models. The full BFLCRM model 

yields the DIC value of 427.19, which is smaller than those of Models 3, but larger than 

those of Model 1 and 2. The Model 1 had the smallest DIC value as 413.08. For Model 1, as 
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shown in Table 3, “Age”, “APOE-ϵ4 carrier”, and “ADAS-cog score” have their 95% HPD 

intervals that do not contain 0. See additional estimation results associated with Models 1-3 

in Tables 3-4 and Figures 1 and 2 of the supplementary document. Based on the iAUC 

values, however, the full BFLCRM model achieves the best predictive performance. 

Moreover, the full model and Model 1, that include the hippocampal surface data as 

functional covariates, provide better predictive performance than Models 2 and 3. This may 

indicate that the hippocampal surface data contributes significantly to the time of conversion 

from MCI to AD. We estimated the iAUC by using a Monte Carlo cross-validation (MCCV) 

method [32]. Specifically, the full data set was randomly split into a training set with 200 

subjects and a test set with 146 subjects. For each such split, we fitted each model to the 

training set and then calculated iAUC based on the test set. This random split was repeated 

100 times yielding the estimated iAUC values for all models.

4. Simulation Studies

We conduct Monte Carlo simulations to evaluate the proposed BFLCRM across different 

censoring rates and sample sizes. Moreover, we will evaluate the predictability of our 

BFLCRM compared to proportional hazards models without the use of functional 

covariates.

4.1. Setup

We generated all simulated data sets according to model (2.1). The xi is a 4 × 1 vector and 

its corresponding elements were independently generated from N(0, 0.5). We set the true 

value of β to be (0.7, 0.2, −0.5, −1)T. The functional covariate Zi(s) was generated from 

model (2.3), where its underlying function follows the standard Gaussian process with the 

covariance function K(s, t) = exp(−3(s − t)2). The observed functional covariate data Wi(s) 

consists of noisy observations evaluated at 100 equally spaced grids in the interval [−4,4] 

with some measurement errors. Specifically, the measurement errors ϵi(s) were 

independently generated from a N(0, 0.5) across s. The functional coefficient γ(s) was 

generated from the standard Gaussian process with covariance function Kγ(s, t) = exp(−2(s − 

t)2). To generate the survival time, we considered two different baseline hazard functions 

h01(·) and h02(·) as follows.

(4.1)

(4.2)

The first baseline hazard function h01(·) assumes that it is constant over time. As a more 

general form of hazard function, we consider a mixed form of baseline hazard functions for 

the exponenetial and Weibull distributions. The hazard function h02(·) depends on κ and ω. 

In this simulation study, we set κ = 1/3 and ω = 2. Finally, the censoring times were 

independently generated from a uniform distribution with parameter chosen to achieve a 
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desired censoring rate of 30% or 50%. We considered sample sizes of n = 200 and n = 500 

for each censoring rate and simulated 100 data sets for each case.

4.2. Simulation Results

We used the piecewise constant hazard model for h0(s), in which we set J = 5 and 

subintervals (sj−1, sj] to be of equal length. We set (α0j, α1j) = (0.2, 0.4) for all j, Σ0 = 

diag(5, ··· , 5), and μ0 = diag(0, ··· , 0)T. We calculated the first 12 fPC scores explaining 

95% of the variation of the functional covariates, and then compared the estimation results 

using the first 12 PC scores in order to investigate the efficacy of using fPCA. For each 

simulated data set, we ran the Gibbs sampler for 20,000 iterations with 5,000 burn-in 

iterations.

To examine the estimation and prediction performance of BFLCRM, we calculated mean 

squared errors (MSEs) and time-dependent integrated area under the curve (iAUC)[32] 

based on 100 simulated data sets for each scenario. The computational time (in C/C++ using 

an 8-cores 2.80 GHz Intel processor) was 50.3 seconds for BFLCRM with sample size 200 

for one repetition. We let  denote the posterior mean of β. The MSE of  is defined by 

, whereas the MSE for γ(·) is defined by 

, where  denotes the posterior mean of γ at time s. A 

smaller MSE implies better estimation accuracy, and a large value of iAUC implies a better 

predictive model. To evaluate the predictive value of the functional covariate to the hazard 

function, we calculated iAUC for two nested models including a reduced BFLCRM model 

with solely scalar covariates in xi and a full BFLCRM model with both Wi(·) and xi.

Table 4 presents the estimation results with h01(·) in (4.1) based on 100 simulated data sets 

for each scenario. The MSE values of both  and  are fairly small in all the cases. The 

values of iAUC indicate reasonable predictive performance of our BFLCRM. The MSE 

value decreases as either the sample size gets larger or the censoring rate gets smaller. Also, 

estimation results of fPCA are better than those of PCA in both MSE and iAUC. When the 

functional covariate has moderate measurement noise, fPCA will lead better estimation and 

prediction results since the use of smoothing step in fPCA can dramatically reduce 

measurement errors. Table 5 presents the means and standard errors of iAUC for the reduced 

and full BFLCRM models under each scenario. The iAUC value of the full BFLCRM model 

is generally larger than that of the reduced model in all scenarios. This may indicate that the 

use of functional covariates can improve predictability of the hazard function. Figure 5 

shows the baseline hazard functions estimated by the full BFLCRM from the first 10 data 

sets in the sample size 500 cases. The dotted lines show the estimated baseline hazard 

functions, and the true baseline hazard function h01(·) is plotted as a solid line on each plot. 

When the true baseline hazard function is constant, our model estimates the true function 

well in low to moderate censoring cases.

Table 6 presents the estimation results with h02(·) in (4.1) based on 100 simulated data sets 

for each scenario. Table 7 shows iAUC values for the two nested models. These results in 

Tables 6 and 7 are consistent with those based on h01(·). The estimated baseline hazard 

Lee et al. Page 12

Ann Appl Stat. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



functions are presented in Figure 6 for the sample size 500 cases. We plot the estimated 

baseline hazard functions of the first 10 data sets using the full BFLCRM model. The solid 

line shows the true baseline hazard function h02(·) on each plot. When the true baseline 

hazard function is not piecewise constant, it is well approximated by the estimated baseline 

hazard function in the low censoring case. In the moderate censoring case, our model 

captures the general pattern of the true baseline hazard function. It may indicate that our 

BFLCRM approximates the general form of the baseline hazard function fairly well and 

therefore it is applicable for most of the practical settings.

5. Discussion

The BFLCRM was developed to predict the time of conversion from MCI to AD, as well as 

to determine the optimal set of predictors at baseline that effect the time of conversion. We 

obtained estimation and prediction results for functional and scalar predictors. This study 

has examined a very large set of predictors for predicting the time of conversion from MCI 

to AD. We observed several important predictors including (i) gender, (ii) handedness, (iii) 

APOE status, and (iv) surface morphology changes with the right and left hippocampi. 

These findings highlight the importance of including not only demographic and clinical 

information, but also high-dimensional imaging data, in statistical analyses of MCI-AD 

conversion. These results are also consistent with newly published clinical research criteria 

which incorporate the use of an array of biomarkers in research settings and clinical trials 

[1].

Several prior studies have highlighted the importance of hippocampal changes in the context 

of AD-related neurodegeneration and prediction of MCI-AD conversion [18]. These studies, 

however, commonly assess changes to hippocampal volume rather than surface morphology. 

The current analysis includes both measures of volume and surface area, with the changes in 

surface morphology adding additional predictive value.

As shown in Figure 4, the changes in surface area occur more prominently on the anterior 

portion of the long axis of the hippocampus. Functional MRI studies in healthy adults 

suggest that anterior portions of the hippocampus are critical for the mnemonic binding 

processes that are engaged in tasks of episodic (day-to-day) memory. Since episodic 

memory tasks, particularly those that require binding operations, are some of the earliest 

cognitive impairments observed in MCI-AD [2], the anterior surface changes identified in 

the current analysis may underlie these early memory changes and serve as an important 

predictor of time of conversion.

From Figure 4, we observed that when hippocampal atrophy was greater in the CA1 subfield 

and subiculum of the hippocampi, it took shorter to progress to AD. Similar to our finding, it 

was reported that greater atrophy of CA1 and subicular subfields in hippoocampi was related 

to increased risk for conversion from MCI to AD [3]. The subregional atrophy rate in the 

CA1 and subicular subfields was also turned out to be the best predictor to explain the 

progression to AD from MCI [25]. Also, it was revealed that left hippocampal body volume 

was associated with delayed verbal memory [7], where the delayed verbal memory was one 
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of important predictor for determining whether a subject was a MCI converter or not [28]. 

Thus, our finding in Figure 4 supports these research results.

Beyond the important effects on hippocampal surface morphology, we observed important 

volumetric changes in the left hippocampal formation and the right amygdala. There has 

been extensive research to diagnose Alzheimer’s disease by using atrophy of various brain 

regions [15, 17, 36,64]. In particular, it was reported that the volume hippocampal formation 

showed significant reduction in patients with clinically diagnosed Alzheimer’s disease [35, 

42]. It was also found that the amygdala volume was reduced in very early AD, which 

suggested that MRI-based amygdaloid volumetric measurement was a relevant biomarker 

[49]. Also, as shown in [57], the level of amygdala atrophy is related to global illness 

severity in the early stage of AD. Our ADNI-1 data analysis results agree with these findings 

in that volumetric changes in the hippocampal formation is an important variable to predict 

the time to conversion from MCI to AD.

The analysis also shows that APOE status exerts important effects on the time of conversion. 

Our results also agree with several prior studies that have documented that the presence of 

the APOE ϵ4 allele increases the risk of developing Alzheimer’s disease. Particularly, if a 

subject has APOE ϵ4, then MCI progression more likely occurs.

We have demonstrated the utility of BFLCRM as a valuable method for identifying optimal 

early markers of conversion to AD in patients with MCI. The early markers identified from 

our analysis could be used in case selection for various clinical trials for evaluating drug/

therapeutic efficiency in slowing or modifying AD-related pathophysiology, when such 

drugs and therapeutic treatments are available.

There are some limitations to our analysis. Our findings survived internal cross validation, 

but they need replication in an independent community-based sample. We did not include 

measures of pathology (e.g. beta-amyloid) in our models since CSF and amyloid-PET were 

available only in a small subset of individuals in ADNI-1. However, a study of ADNI-2 

subjects has shown a robust correlation between the APOE e4 allele and cortical amyloid 

burden [51], suggesting that APOE e4 may have served as a surrogate for cortical amyloid 

plaque load in our analysis.

We have developed BFLCRM for the use of functional and scalar covariates to predict time-

to-event outcomes. Several important methodological issues need to be addressed in future 

research. First, it would be interesting to investigate the theoretical properties of our 

Bayesian procedure, including the support of the prior and truncation approximation bounds 

qn. Second, it is interesting to develop a new Bayesian method to automatically determine 

the distribution of qn. Third, it is interesting to incorporate high-dimensional scalar 

covariates (e.g., genetic markers in the whole genome) in FLCRM and develop its 

associated estimation and testing procedures. Developing such statistical methods poses 

many new challenges both computationally and theoretically.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
ADNI data: panel (a) is hippocampal subfields mapped onto a representative hippocampal 

surface [4], and panels (b) and (c), respectively, show the top and bottom views of the first 

subject’s hippocampal surface data color-coded by the colorbar in panel (d).
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Fig 2. 
ADNI data analysis results for the full BFLCRM model: panels (a) and (b), respectively, 

show the top and bottom views of the estimated coefficient function associated with the 

hippocampal surface data color-coded by the colorbar in panel (c).
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Fig 3. 
ADNI data analysis results: the estimated survival curves of APOE-ϵ4 carriers and non-

carriers under the full BFLCRM model. Other continuous or categorical covariates are fixed 

at the mean values or reference levels. The dotted lines show the 95% HPD intervals of the 

estimated survival functions.
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Fig 4. 
ADNI data analysis results for the full BFLCRM model: panels (a) and (b), respectively, 

show the top and bottom views of the estimated coefficient function associated with the 

hippocampal surface data color-coded by the colorbar in panel (c).
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Fig 5. 
Simulation results corresponding to h01(·): panels (a) and (b) respectively show the first 10 

estimated baseline hazard functions with 0.3 and 0.5 censoring rates based on the size 500 

samples. The solid line is the true baseline hazard function, h01(·).
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Fig 6. 
Simulation results corresponding to h02(·): panels (a) and (b) respectively show the first 10 

estimated baseline hazard functions with 0.3 and 0.5 censoring rates based on the size 500 

samples. The solid line is the true baseline hazard function, h02(·).
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Table 1

ADNI data analysis results for the full BFLCRM model : the posterior quantities of 19 regression coefficients 

βks, that correspond to xi =(Gender, Handedness, Widowed, Divorced, Never married, Length of Education, 

Retirement, Age, APOE-ϵ4 carrier, ADAS-cog Score, posterior limb of internal capsule, Right hippocampal 

formation, Left hippocampal formation, Left thalamus, Left amygdala, Right amygdala, and Right thalamus). 

Mean denotes ‘posterior mean’, SD denotes ‘posterior standard deviation’, and lower and upper, respectively, 

represent the ‘lower and upper limits’ of a 95% highest posterior density interval.

β 1 β 2 β 3 β 4 β 5 β 6 β 7 β 8

Mean 0.4344 0.2255 0.3119 0.2729 0.7203 −0.0874 0.3455 −0.0519

SD 0.2513 0.3647 0.3827 0.4663 0.7867 0.0367 0.2482 0.0178

lower −0.0495 −0.5248 −0.4632 −0.6789 −0.9383 −0.1691 −0.0919 −0.0873

upper 0.9478 0.8628 1.0138 1.1195 2.2009 −0.0244 0.8608 −0.0188

β 9 β 10 β 11 β 12 β 13 β 14 β 15 β 16 β 17

Mean 0.5550 0.1568 0.0008 0.0006 −0.0011 −0.0004 0.0018 −0.0012 0.0003

SD 0.2341 0.0265 0.0005 0.0004 0.0004 0.0004 0.0009 0.0005 0.0004

lower 0.1258 0.1030 −0.0002 −0.0002 −0.0019 −0.0012 0.0000 −0.0023 −0.0004

upper 1.0258 0.2075 0.0019 0.0014 −0.0004 0.0003 0.0036 −0.0002 0.0010
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Table 2

ADNI data analysis results under the four models: Deviance Information Criterion (DIC) and the empirical 

means of iAUC values and their corresponding standard errors in the parenthesis calculated from the Monte 

Carlo cross-validation (MCCV).

the full BFLCRM model Model 1 Model 2 Model 3

DIC 427.19 413.08 417.04 438.22

iAUC 0.840 (0.003) 0.836 (0.003) 0.809 (0.003) 0.751 (0.004)
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Table 4

Simulation results corresponding to h01(·) under different censoring rates and sample sizes: the deviance 

information criterion (DIC), the mean squared errors (MSE) of  and  and the estimated integrated area under 

the curve (iAUCs) and their standard errors in parentheses calculated from the 100 simulated data sets. The 

Gibbs sampler was run for 20,000 iterations with 5,000 burn-in iterations for each simulated data set.

sample
size

censoring
rate MSEβ̂ MSEγ̂ iAUC DIC

200 0.3 FPCA 0.109 (0.009) 0.614 (0.016) 0.935 (0.001) 42.99 (3.46)

PCA 0.113 (0.010) 0.847 (0.020) 0.934 (0.001) 44.66 (3.58)

0.5 FPCA 0.181 (0.014) 0.696 (0.021) 0.933 (0.002) −93.80 (3.44)

PCA 0.186 (0.014) 0.913 (0.025) 0.932 (0.002) −92.21 (3.46)

500 0.3 FPCA 0.045 (0.003) 0.445 (0.012) 0.932 (0.001) 83.52 (4.52)

PCA 0.047 (0.003) 0.581 (0.015) 0.930 (0.001) 85.50 (4.57)

0.5 FPCA 0.052 (0.004) 0.454 (0.013) 0.928 (0.001) −260.93 (4.58)

PCA 0.052 (0.004) 0.600 (0.015) 0.927 (0.001) −259.37 (4.63)
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Table 5

Simulation results corresponding to h01(·): the mean iAUC and the corresponding standard error in the 

parenthesis calculated from the 100 simulated data sets for each scenario. The Gibbs sampler was run for 

20,000 iterations with 5,000 burn-in iterations for each simulated data set.

n
Censoring rate

200 500

0.3 0.5 0.3 0.5

reduced 0.675 (0.004) 0.612 (0.006) 0.668 (0.002) 0.666 (0.002)

full 0.935 (0.001) 0.933 (0.002) 0.932 (0.001) 0.928 (0.001)
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Table 6

Simulation results corresponding to h02(·) under different censoring rates and sample sizes: the deviance 

information criterion (DIC), the mean squared errors (MSE) of  and  and the estimated integrated area under 

the curve (iAUC), and their standard errors in parentheses calculated from the 100 simulated data sets. The 

Gibbs sampler was run for 20,000 iterations with 5,000 burn-in iterations for each simulated data set.

sample
size

censoring
rate MSEβ̂ MSEγ̂ iAUC DIC

200 0.3 FPCA 0.112 (0.009) 0.618 (0.018) 0.934 (0.001) 128.21 (3.57)

PCA 0.112 (0.010) 0.854 (0.021) 0.933 (0.001) 129.02 (3.66)

0.5 FPCA 0.183 (0.017) 0.698 (0.023) 0.933 (0.002) −15.26 (3.37)

PCA 0.189 (0.018) 0.913 (0.023) 0.932 (0.002) −13.70 (3.38)

500 0.3 FPCA 0.048 (0.003) 0.453 (0.012) 0.931 (0.001) 306.94 (4.46)

PCA 0.049 (0.005) 0.586 (0.015) 0.930 (0.001) 308.62 (4.49)

0.5 FPCA 0.054 (0.004) 0.457 (0.013) 0.927 (0.001) −69.55 (4.50)

PCA 0.054 (0.004) 0.611 (0.016) 0.926 (0.001) −68.00 (4.54)
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Table 7

Simulation results corresponding to h02(·): the mean iAUC and the corresponding standard error in the 

parenthesis calculated from the 100 simulated data sets for each scenario. The Gibbs sampler was run for 

20,000 iterations with 5,000 burn-in iterations for each simulated data set.

n
Censoring rate

200 500

0.3 0.5 0.3 0.5

reduced 0.673 (0.004) 0.612 (0.006) 0.668 (0.002) 0.665 (0.002)

full 0.934 (0.001) 0.933 (0.002) 0.931 (0.001) 0.927 (0.001)
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